

Return on Investment for Software IV&V

Third Annual NASA Project Management Conference

March 2006

James B. Dabney
University of Houston – Clear Lake
dabney@cl.uh.edu
(281)283-3852

Kenneth A. Costello
NASA IV&V Facility
Fairmont, West Virginia
Kenneth.A.Costello@nasa.gov

Overview

- Overview of IV&V ROI
- Direct ROI computation
- Indirect ROI computation
- Predicting ROI
- Conclusions & Future Work

IV&V ROI Motivation

- Important measure of IV&V project value
 - Helps to understand overall IV&V effectiveness
 - Comparison to similar projects
 - Directly quantify value added
- Prevalence of ROI references in other research
 - Most HICSS papers indicated need for ROI computation
- OMB-mandated for some U.S. government-sponsored projects
- Model should allow ROI prediction for candidate projects
- Model should allow ROI computation for completed projects

IV&V ROI

Many benefits of IV&V difficult to quantify

- Most cause cost avoidance
 - Reduced development cost
 - Reduced operational cost
 - Increased likelihood of mission success
- In many cases, actual cost of an undiscovered error can't be predicted
 - Depends on whether error is manifest in operations
 - Depends on situation when error is manifest

ROI Definitions

ROI (benefit/cost ratio)

$$ROI = \frac{Cost saved due to IV\&V}{Cost of IV\&V}$$

- Direct ROI result of reduced development cost
- Indirect ROI
 - Improved quality
 - Reduced risk
 - Improved safety
 - Increased confidence in product
- ROI model developed for software IV&V
 - Methodology directly applicable to other systems engineering disciplines

Direct ROI Computation

$$ROI = \frac{C_x - C_i}{C_{IVV}}$$

- C_i total development cost actually experienced
- C_{IVV} cost of IV&V
- C_x expected development cost without IV&V
 - Assume developer would have discovered all IV&V-discovered issues
 - Same probability distribution developer exhibited in remaining phases
 - Cost-to-fix escalation based on published data

Direct ROI Model Structure

Cost-to-Fix Escalation

- Cost to fix a defect increases as project progresses
- Cost escalation model based on weighted average of published results
 - Weighting accounted for
 - Relevance of study to NASA mission-critical software
 - Credibility of results
 - Size of study
- Most data for requirements defects
- The data available indicate that similar trends occur for other types of defects (design, code, test, integration)
- A sensitivity study demonstrated that model is relatively insensitive to variations in the cost-to-fix escalation factors

Cost-to-fix Escalation Factors

Issue type	Phase issue found					
	Requirements	Design	Code	Test	Int	Ops
Requirements	1	5	10	50	130	368
Design		1	2	10	26	74
Code			1	5	13	37
Test				1	3	7
Integration					1	3

Case Study Results

- Four mission-critical NASA projects
 - Mission control center software
 - Interplanetary spacecraft
 - Next-generation experimental spacecraft
 - Manned spacecraft
- Direct ROI computed for each project

Direct ROI Case Study Results

Project	Size (function points)	ROI
Α	280	1.59
В	1086	1.21
С	110	5.53
D	2268	10.1

Indirect ROI

- Many important benefits difficult to quantify
- Candidate list of 84 indirect benefits refined to four that can be quantified credibly
 - Improved testing
 - Reduced high-criticality errors
 - Requirements clarification
 - Reduced error leakage to operations
- Developed method to compute each

Predicting ROI

- Tool to predict ROI of IV&V will be very useful
 - Assist in allocating resources for greatest benefit
 - Model-based effectiveness metric
- Products of predictive model are inputs to direct ROI algorithm – issue discovery rates
- Predictive model must be based on information available (at least estimated) early in lifecycle

Predictive Techniques Considered

Capture-Recapture

- Based on biological models for counting animals
- Different techniques can be expected to find different defects
- Rejected because studies show not reliable for software

CoQUALMO

- Uses appealing defect flow model
- Rejected because not calibrated & would require many (hundreds) studies to calibrate

Bayesian Belief Networks

- Exploits expert opinion and available data optimally
- Calibration to case study data relatively straightforward
- Appeared extensible to full predictive model (Fenton)
- Accepted because of success of other researchers in BBN modeling of software defect density

BBN Node

Node output is a random variable with a probability density function that depends on the node inputs

Cascaded Nodes

Requirements Quality BBN

Developer Defect Discovery BBN

Developer Defect Removal Efficiency

IV&V Defect Discovery BBN

r29

BBN Output

- Objective is set of inputs for direct ROI model
- Developer and IV&V budgets generally available
- In-phase issue discovery profiles from BBN
 - Function point ratio (FPR) selected
 - Ratio of issue size to total project function points
 - Function points can be estimated early in the project
 - Product of FPR and total function points is the required input

Leakage Model

- BBN predicts in-phase issue detection
- Rayleigh curve approximates leakage from originating phase to subsequent phases
- Supported by extensive literature and consistent with case study results
- Calibrated to case study data
- Shift curve for phases later than requirements

Example Rayleigh Curve

- Circles are actual cumulative FPR per phase
- Curve is calibrated
 Rayleigh approximation to cumulative FPR per phase
- FPR values are weighted using cost escalation model

Conclusions

- Direct ROI methodology provides a credible means to compute ROI for IV&V
- Adding indirect ROI more accurate, but difficult to compute
- Predictive ROI model is promising
 - Uses information available early in lifecycle
 - Preliminary calibration produced consistent results

Future Work

- Produce production-quality predictive ROI model
- Perform additional case studies to improve calibration of BBN output to FPR